1,108 research outputs found

    Noncommutative geometry inspired black holes in higher dimensions at the LHC

    Full text link
    When embedding models of noncommutative geometry inspired black holes into the peridium of large extra dimensions, it is natural to relate the noncommutativity scale to the higher-dimensional Planck scale. If the Planck scale is of the order of a TeV, noncommutative geometry inspired black holes could become accessible to experiments. In this paper, we present a detailed phenomenological study of the production and decay of these black holes at the Large Hadron Collider (LHC). Noncommutative inspired black holes are relatively cold and can be well described by the microcanonical ensemble during their entire decay. One of the main consequences of the model is the existence of a black hole remnant. The mass of the black hole remnant increases with decreasing mass scale associated with noncommutative and decreasing number of dimensions. The experimental signatures could be quite different from previous studies of black holes and remnants at the LHC since the mass of the remnant could be well above the Planck scale. Although the black hole remnant can be very heavy, and perhaps even charged, it could result in very little activity in the central detectors of the LHC experiments, when compared to the usual anticipated black hole signatures. If this type of noncommutative inspired black hole can be produced and detected, it would result in an additional mass threshold above the Planck scale at which new physics occurs.Comment: 21 pages, 7 figure

    Quantum Black Holes from Cosmic Rays

    Get PDF
    We investigate the possibility for cosmic ray experiments to discover non-thermal small black holes with masses in the TeV range. Such black holes would result due to the impact between ultra high energy cosmic rays or neutrinos with nuclei from the upper atmosphere and decay instantaneously. They could be produced copiously if the Planck scale is in the few TeV region. As their masses are close to the Planck scale, these holes would typically decay into two particles emitted back-to-back. Depending on the angles between the emitted particles with respect to the center of mass direction of motion, it is possible for the simultaneous showers to be measured by the detectors.Comment: 6 pages, 3 figure

    Critical Trapped Surfaces Formation in the Collision of Ultrarelativistic Charges in (A)dS

    Full text link
    We study the formation of marginally trapped surfaces in the head-on collision of two ultrarelativistic charges in (A)dS(A)dS space-time. The metric of ultrarelativistic charged particles in (A)dS(A)dS is obtained by boosting Reissner-Nordstr\"om (A)dS(A)dS space-time to the speed of light. We show that formation of trapped surfaces on the past light cone is only possible when charge is below certain critical - situation similar to the collision of two ultrarelativistic charges in Minkowski space-time. This critical value depends on the energy of colliding particles and the value of a cosmological constant. There is richer structure of critical domains in dSdS case. In this case already for chargeless particles there is a critical value of the cosmological constant only below which trapped surfaces formation is possible. Appearance of arbitrary small nonzero charge significantly changes the physical picture. Critical effect which has been observed in the neutral case does not take place more. If the value of the charge is not very large solution to the equation on trapped surface exists for any values of cosmological radius and energy density of shock waves. Increasing of the charge leads to decrease of the trapped surface area, and at some critical point the formation of trapped surfaces of the type mentioned above becomes impossible.Comment: 30 pages, Latex, 7 figures, Refs. added and typos correcte

    Brane-world black holes and the scale of gravity

    Full text link
    A particle in four dimensions should behave like a classical black hole if the horizon radius is larger than the Compton wavelength or, equivalently, if its degeneracy (measured by entropy in units of the Planck scale) is large. For spherically symmetric black holes in 4 + d dimensions, both arguments again lead to a mass threshold MC and degeneracy scale Mdeg of the order of the fundamental scale of gravity MG. In the brane-world, deviations from the Schwarzschild metric induced by bulk effects alter the horizon radius and effective four-dimensional Euclidean action in such a way that MC \simeq Mdeg might be either larger or smaller than MG. This opens up the possibility that black holes exist with a mass smaller than MG and might be produced at the LHC even if M>10 TeV, whereas effects due to bulk graviton exchanges remain undetectable because suppressed by inverse powers of MG. Conversely, even if black holes are not found at the LHC, it is still possible that MC>MG and MG \simeq 1TeV.Comment: 4 pages, no figur

    The Hawking-Page crossover in noncommutative anti-deSitter space

    Full text link
    We study the problem of a Schwarzschild-anti-deSitter black hole in a noncommutative geometry framework, thought to be an effective description of quantum-gravitational spacetime. As a first step we derive the noncommutative geometry inspired Schwarzschild-anti-deSitter solution. After studying the horizon structure, we find that the curvature singularity is smeared out by the noncommutative fluctuations. On the thermodynamics side, we show that the black hole temperature, instead of a divergent behavior at small scales, admits a maximum value. This fact implies an extension of the Hawking-Page transition into a van der Waals-like phase diagram, with a critical point at a critical cosmological constant size in Plank units and a smooth crossover thereafter. We speculate that, in the gauge-string dictionary, this corresponds to the confinement "critical point" in number of colors at finite number of flavors, a highly non-trivial parameter that can be determined through lattice simulations.Comment: 24 pages, 6 figure, 1 table, version matching that published on JHE

    Minimum length effects in black hole physics

    Full text link
    We review the main consequences of the possible existence of a minimum measurable length, of the order of the Planck scale, on quantum effects occurring in black hole physics. In particular, we focus on the ensuing minimum mass for black holes and how modified dispersion relations affect the Hawking decay, both in four space-time dimensions and in models with extra spatial dimensions. In the latter case, we briefly discuss possible phenomenological signatures.Comment: 29 pages, 12 figures. To be published in "Quantum Aspects of Black Holes", ed. X. Calmet (Springer, 2014

    Post Eclosion Age Predicts the Prevalence of Midgut Trypanosome Infections in Glossina

    Get PDF
    The teneral phenomenon, as observed in Glossina sp., refers to the increased susceptibility of the fly to trypanosome infection when the first bloodmeal taken is trypanosome-infected. In recent years, the term teneral has gradually become synonymous with unfed, and thus fails to consider the age of the newly emerged fly at the time the first bloodmeal is taken. Furthermore, conflicting evidence exists of the effect of the age of the teneral fly post eclosion when it is given the infected first bloodmeal in determining the infection prevalence. This study demonstrates that it is not the feeding history of the fly but rather the age (hours after eclosion of the fly from the puparium) of the fly when it takes the first (infective) bloodmeal that determines the level of fly susceptibility to trypanosome infection. We examine this phenomenon in male and female flies from two distinct tsetse clades (Glossina morsitans morsitans and Glossina palpalis palpalis) infected with two salivarian trypanosome species, Trypanosoma (Trypanozoon) brucei brucei and Trypanosoma (Nannomonas) congolense using Fisher's exact test to examine differences in infection rates. Teneral tsetse aged less than 24 hours post-eclosion (h.p.e.) are twice as susceptible to trypanosome infection as flies aged 48 h.p.e. This trend is conserved across sex, vector clade and parasite species. The life cycle stage of the parasite fed to the fly (mammalian versus insect form trypanosomes) does not alter this age-related bias in infection. Reducing the numbers of parasites fed to 48 h.p.e., but not to 24 h.p.e. flies, increases teneral refractoriness. The importance of this phenomenon in disease biology in the field as well as the necessity of employing flies of consistent age in laboratory-based infection studies is discussed

    Hawking emission from quantum gravity black holes

    Get PDF
    We address the issue of modelling quantum gravity effects in the evaporation of higher dimensional black holes in order to go beyond the usual semi-classical approximation. After reviewing the existing six families of quantum gravity corrected black hole geometries, we focus our work on non-commutative geometry inspired black holes, which encode model independent characteristics, are unaffected by the quantum back reaction and have an analytical form compact enough for numerical simulations. We consider the higher dimensional, spherically symmetric case and we proceed with a complete analysis of the brane/bulk emission for scalar fields. The key feature which makes the evaporation of non-commutative black holes so peculiar is the possibility of having a maximum temperature. Contrary to what happens with classical Schwarzschild black holes, the emission is dominated by low frequency field modes on the brane. This is a distinctive and potentially testable signature which might disclose further features about the nature of quantum gravity.Comment: 36 pages, 18 figures, v2: updated reference list, minor corrections, version matching that published on JHE

    Use of the internet by Italian pediatricians: habits, impact on clinical practice and expectations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medical professionals go online for literature searches and communication with families.</p> <p>We administered a questionnaire to members of the Italian Society of Pediatrics to assess determinants of their use of the Internet, of social platforms and of personal health records during clinical practice.</p> <p>Methods</p> <p>All the 9180 members of the Italian Society of Pediatrics were invited to fill in a questionnaire concerning use of the Internet and usefulness of Internet-based tools during clinical practice. The questionnaire was administered through the SurveyMonkey<sup>® </sup>web platform. Logistic regression analysis was used to study factors affecting use and influence of the Internet in clinical practice.</p> <p>Results</p> <p>A total of 1335 (14.5%) members returned the questionnaire. Mean age was 49.2 years, 58.6% were female. 32.3% had access to the Internet through a Smartphone. 71.9% of respondents used the Internet during clinical practice, mainly searching for guidelines and drug references. Use of the Internet during clinical practice was more frequent among younger pediatricians (OR 0.964; 95% CI 0.591-0.978), males (OR 1.602; 95% CI 1.209-2.123) and those living in Northern and Central Italy (OR 1.441; 95% CI 1.111-1.869), while it was lower among family pediatricians. 94.6% of respondents were influenced in their clinical practice by information found on the Internet, in particular younger pediatricians (OR 0.96, 95% CI 0.932-0.989), hospital pediatricians (OR 2.929, 95% CI 1.708-5.024), and other pediatric profiles (OR 6.143, 95%CI 1.848-20.423). 15.9% of respondents stated that social networks may be useful in pediatric practice. Slightly more than half (50.5%) of respondents stated that personal health records may be clinically relevant. Registrars and hospital pediatricians were more likely to perceive personal health records as useful tools for clinical practice. Additional resources pediatricians would like to access were free bibliographic databases and tools for interacting with families.</p> <p>Conclusions</p> <p>Italian pediatricians frequently use the Internet during their practice. One-third of them access the Internet through a Smartphone. Interaction with families and their empowerment can be improved by the use of Internet tools, including personal health records, toward which respondents show a significant interest. Though, they show a general resistance to the introduction of social networks in clinical practice.</p
    corecore